Showing posts with label hyperbolic. Show all posts
Showing posts with label hyperbolic. Show all posts

Tuesday, March 25, 2025

雙曲巴克球P曲面嵌入珠飾模型

數學之美:2018年Bridges會議展出的雙曲巴克球P曲面嵌入珠飾模型

Bridges會議是一個享譽國際的年度盛會,它巧妙地連接了數學、藝術、音樂、建築等多個領域。每年的數學藝術展覽都是會議的一大亮點,展示了藝術家們如何將深奧的數學概念轉化為引人入勝的視覺作品。在 **2018年的Bridges會議**上,一件名為 "**Bead model for the hyperbolic buckyball embedded in a P-surface**"(嵌入P曲面的雙曲巴克球珠飾模型)的藝術品,以其獨特的幾何形態和精湛的製作工藝,吸引了眾多與會者的目光。

背景介紹:最小曲面與雙曲幾何

為了更好地理解這件藝術品,我們需要了解以下幾個關鍵概念:

  • 最小曲面(Minimal Surface): 指的是在給定邊界條件下,具有最小表面積的曲面。P-曲面是一種重要的三週期極小曲面(Triply Periodic Minimal Surface, TPMS)。
  • 巴克球(Buckyball): 又稱足球烯,最著名的例子是C60,是一種由60個碳原子組成的球狀富勒烯分子。
  • 雙曲幾何(Hyperbolic Geometry): 一種非歐幾里得幾何,其曲率為負。在雙曲幾何中,三角形的內角和小於180度。
  • 雙曲巴克球(Hyperbolic Soccerball): 與球形的巴克球類似,但具有雙曲的結構,通常包含七邊形而不是五邊形。

藝術品詳情:Bead model for the hyperbolic buckyball embedded in a P-surface

Bead model for the hyperbolic buckyball embedded in a P-surface

創作者:劉采容 Liu (Tsai-Jung Liu)與金必耀 (Bih-Yaw Jin)

  • 尺寸: 18 x 18 x 18 厘米
  • 材料: 6毫米塑料珠子
  • 創作年份: 2018

這件珠飾模型生動地展現了一個 **嵌入在P型三週期極小曲面中的雙曲巴克球**。與常見的巴克球C60不同,雙曲巴克球是一種具有負曲率的石墨結構,其特點是包含七邊形。

在這個模型中,**藍色的珠子代表七邊形**,每個七邊形都被七個相鄰的七邊形隔開,可以用 **向量 (1,1)** 來表示 。分隔相鄰七邊形的 **單個碳-碳鍵** 則由 **粉色的珠子** 來表示 。通過這種方式,藝術家巧妙地利用不同顏色的珠子,清晰地呈現了雙曲巴克球的結構特徵。

根據藝術家的闡述,這個雙曲巴克球是通過對之前的 **全七邊形網絡** 進行 **跳蛙變換(leap-frog transformation)** 得到的。一次跳蛙變換後,單元晶胞中的碳原子數量增加到 **168個** 。

與 Bead model for the Klein’s all-heptagon network embedded in a P-surface 的關聯

這件雙曲巴克球的珠飾模型與同年(2018年)在Bridges會議上展出的另一件作品 "**Bead model for the Klein’s all-heptagon network embedded in a P-surface**"(嵌入P曲面的克萊因全七邊形網絡珠飾模型)有著密切的聯繫。

  • **共同的基礎結構:** 兩件作品都以 **P型三週期極小曲面** 作為嵌入的基礎。P-曲面提供了一個具有複雜拓撲結構的空間,用於展示這些非同尋常的碳結構。
  • **七邊形的重要性:** 兩者都涉及到 **七邊形**。克萊因全七邊形網絡完全由七邊形構成,而雙曲巴克球的特徵也在於包含七邊形。
  • **變換關係:** 最關鍵的聯繫在於,雙曲巴克球模型是通過對克萊因全七邊形網絡進行 **跳蛙變換** 得到的。這意味著後者可以被視為前者的“前身”或基礎結構。跳蛙變換是一種特定的幾何操作,導致了碳原子數量的增加和結構的改變。

因此,這兩件藝術品共同展示了從一個全七邊形網絡通過數學變換到一個更複雜的雙曲富勒烯結構的過程,凸顯了數學在理解和創造新的碳同素異形體方面的作用。

關於作者

  • 劉采容 (Tsai-Jung Liu):
  • 金必耀 (Bih-Yaw Jin): 是國立台灣大學化學系的教授,長期以來一直致力於運用串珠技術來構建各種數學和化學結構的物理模型。他的研究興趣涵蓋了富勒烯、石墨烯等碳材料的幾何結構。

「嵌入P曲面的雙曲足球烯珠子模型」不僅是一件視覺上引人入勝的藝術品,更是對複雜幾何和化學概念的深刻探索。通過與「嵌入P曲面的克萊因全七邊形網絡珠子模型」的比較,我們可以更清晰地理解結構之間的演變關係以及數學變換在分子結構設計中的作用。金必耀教授和劉采容 再次向我們展示了數學、科學與藝術之間令人驚嘆的橋樑。欲了解更多關於他們的精彩工作,請訪問 Bridges 數學藝術畫廊

克萊因全七邊形網絡P曲面嵌入串珠模型

數學之美:2018年Bridges會議展出的克萊因全七邊形網絡P曲面嵌入珠飾模型

Bridges會議是一個獨特的國際盛會,匯集了數學、藝術、音樂、建築等多元領域的參與者。其數學藝術展覽是會議的重要組成部分,展示了數學概念與藝術創作的精妙結合。在2018年的Bridges會議上,一件名為 "Bead model for the Klein’s all-heptagon network embedded in a P-surface"(嵌入P曲面的克萊因全七邊形網絡珠飾模型)的藝術品,以其複雜的幾何結構和視覺呈現,吸引了眾多目光。

背景介紹:最小曲面與富勒烯

在深入了解這件藝術品之前,我們需要對以下概念有所了解:

  • 最小曲面(Minimal Surface): 在給定邊界下,具有最小表面積的曲面。P-曲面是一種三週期極小曲面(Triply Periodic Minimal Surface, TPMS)。
  • 富勒烯(Fullerene): 一類由碳原子組成的籠狀分子,例如著名的巴克球C60。藝術家們也對具有非球形結構的假設富勒烯進行了探索。
  • 克萊因全七邊形網絡(Klein’s all-heptagon network): 一種僅由七邊形組成的週期性圖形結構。

藝術品詳情:Bead model for the Klein’s all-heptagon network embedded in a P-surface

Bead model for the Klein’s all-heptagon network embedded in a P-surface

創作者:劉采容 (Tsai-Jung Liu)與金必耀 (Bih-Yaw Jin)

  • 尺寸: 16 x 16 x 16 厘米
  • 材料: 8毫米塑料珠子
  • 創作年份: 2015

這件雕塑作品呈現了一個 **嵌入在虧格為3的P型三週期極小曲面中的克萊因全七邊形網絡的物理模型**。這個網絡可以通過 **Goldberg向量 (1,0)** 來指定,其中每個七邊形都被七個相鄰的七邊形所環繞。

在結構的單元晶胞中,包含了 **56個碳原子**,**84條邊** 和 **24個面**。藝術家們使用 **8毫米的塑料珠子** 來精確地呈現這一複雜的幾何結構。

根據藝術家的闡述,在化學領域,串珠模型中珠子之間的硬球排斥可以顯著地模擬富勒烯(一種球狀純碳分子)的分子形狀 。此前,在2016年的聯合數學會議(Joint Mathematical Meeting)藝術展覽上,畢耀明和鄒嘉勤曾展出過與嵌入在類金剛石最小曲面中的假設負曲率富勒烯相關的珠飾模型。而本次展出的作品則展示了嵌入在P型最小曲面上的兩種sp2碳同素異形體,它們由七邊形和六邊形構成。

這件作品不僅在視覺上引人入勝,更體現了數學、化學與藝術之間的深刻聯繫,通過具體的物理模型幫助人們理解抽象的幾何概念和分子結構。

關於作者

  • 劉采容 (Tsai-Jung Liu):
  • 金必耀 (Bih-Yaw Jin): 國立台灣大學化學系教授,長期致力於使用串珠技術構建各種數學和化學結構的模型。

「嵌入P曲面的克萊因全七邊形網絡珠子模型」是數學、科學和藝術之間深刻聯繫的一個傑出範例。它不僅展示了製作者高超的珠飾技巧,也體現了他們對複雜幾何結構的深刻理解。如果您對這個作品或其他數學藝術作品感興趣,請務必訪問 Bridges 數學藝術畫廊 以獲取更多資訊。

Monday, March 24, 2025

雙曲足球烯串珠模型

賞析:雙曲足球珠飾模型

我們很高興向大家介紹另一件由化學家 Chia-Chin Tsoo 與 Bih-Yaw Jin 創作的迷人數學藝術作品:雙曲足球珠飾模型 (Hyperbolic soccerball)。這件作品與「克萊因全七邊形網絡珠飾模型」一同在 2016 年的 Joint Mathematics Meetings 上展出。

作品詳情

  • 作品名稱:雙曲足球珠飾模型 (Hyperbolic soccerball)
  • 創作者:Chia-Chin Tsoo & Bih-Yaw Jin
  • 展出年份:2016 Joint Mathematics Meetings
  • 創作年份:2014 年
  • 尺寸:16 x 16 x 16 公分
  • 材料:6 毫米塑膠珠

結構特色與概念

這個珠飾模型呈現了一個被稱為雙曲足球 (hyperbolic soccerball)D168 施瓦茲體 (D168 Schwarzite) 的雙曲石墨結構。正如普通的巴克球(分子足球 C60)是一種球形富勒烯分子,其中兩個相鄰的五邊形被單個碳-碳鍵隔開一樣,雙曲足球是一種雙曲石墨結構,其中兩個相鄰的七邊形也被單個碳-碳鍵隔開。

藝術家們運用角織 (angle-weave) 技術,僅使用珠子和線繩,建構出這個近似 3D 曲面的穩固模型。他們對拓撲上非平凡的結構感興趣,其靈感來自於富勒烯和石墨烯。

拓撲背景

如同我們在介紹「克萊因全七邊形網絡珠飾模型」時提到的,虧格 (Genus) 是描述曲面「洞」的數量。雙曲足球作為一種雙曲結構,也具有一樣的虧格。然而,它與具有負曲率的曲面相關聯。

負曲率是指曲面上不同方向的彎曲程度不同,導致局部呈現類似馬鞍的形狀。包含非六邊形環(如七邊形)的石墨結構通常會展現負曲率,這是因為為了容納這些較大的環,結構必須向外彎曲。

與 克萊因全七邊形網絡串珠模型的關聯

來源指出,雙曲足球與 D56 施瓦茲體結構(即克萊因全七邊形網絡所近似的結構)之間存在關聯。具體來說,雙曲足球(D168 施瓦茲體)是通過對 D56 施瓦茲體結構進行跳蛙變換 (leapfrog transformation) 得到的,這個變換包括全冠 (omnicapping) 接著一個對偶化 (dualization)操作。

這意味著這兩個珠飾模型都代表了具有負曲率的週期性石墨結構,並且它們之間存在明確的拓撲和幾何轉換關係。克萊因全七邊形網絡完全由七邊形構成,而雙曲足球則是以類似足球烯的方式排列七邊形,相鄰的七邊形被單個碳-碳鍵隔開。

網站連結

您可以在 Bridges Organization 的網站上找到更多關於 Bih-Yaw Jin 教授及其合作者的藝術作品:

克萊因全七邊形網絡串珠模型 Bead model of Klein's all-heptagon network

賞析:克萊因全七邊形網絡珠飾模型

我們在此向大家介紹一件引人入勝的數學藝術作品:克萊因全七邊形網絡珠飾模型 (Bead model of Klein's all-heptagon network)。這件作品由化學家 金必耀與左家靜 共同創作,並於 2016 年的 Joint Mathematics Meetings 上展出。

作品詳情

  • 作品名稱:克萊因全七邊形網絡珠飾模型 (Bead model of Klein's all-heptagon network) [2]
  • 創作者:金必耀與左家靜
  • 展出年份:2016 Joint Mathematics Meetings
  • 創作年份:2014 年
  • 尺寸:24 x 24 x 24 公分
  • 材料:8 毫米塑膠珠

結構特色與概念

這件珠飾模型呈現了一個週期性的石墨結構,近似於一個虧格 (genus) 為 3 的負曲率 D-曲面,表面裝飾著 Felix Klein 的全七邊形開放網絡。創作者指出,基於這種結構的假設性碳同素異形體可以被稱為 D56 原型施瓦茲體 (D56 protoschwarzite),因為其晶胞中包含 24 個七邊形和 56 個碳原子

在他們的藝術家聲明中,左家靜與金必耀(台灣大學化學系)提到他們是對拓撲上非平凡的結構感興趣的化學家,其靈感來自於富勒烯和石墨烯。他們運用數學珠飾的角織 (angle-weave) 技術,僅使用珠子和線繩,就能夠建構出任意 sp2 雜化石墨結構的近似 3D 曲面之穩固模型。克萊因全七邊形網絡珠飾模型便是他們展示的兩件珠飾雕塑之一。

拓撲背景

為了更好地理解這個作品的拓撲意義,我們需要了解一些背景知識。虧格 (Genus) 是拓撲學中描述一個曲面具有多少個「洞」的數字。例如,一個球面(如足球)的虧格是 0,一個環面(如甜甜圈)的虧格是 1。這個珠飾模型所近似的 D-曲面每個晶胞具有虧格 3,意味著它在拓撲上相當於有三個「洞」的物體。

負曲率是指曲面上不同點的彎曲方向不同,例如馬鞍的形狀就具有負曲率。與正曲率(如球面的彎曲)和零曲率(如平面的平坦)相對。具有全七邊形網絡的石墨結構由於其非六邊形的環,往往呈現負曲率。

Felix Klein 的全七邊形網絡是一種特定的週期性表面結構,其特徵是完全由七邊形構成。這種網絡在數學和化學上都具有重要的研究價值,因為它可以作為構建具有特定拓撲性質的理論材料的基礎。

這個珠飾模型通過具體的物理形式,將抽象的拓撲概念和數學結構可視化,展現了數學與藝術之間的深刻聯繫。

與富勒烯和石墨烯的關聯

藝術家提到他們的靈感來自於富勒烯和石墨烯。富勒烯(最著名的例子是 C60 足球烯)是碳原子組成的球狀分子,而石墨烯是碳原子組成的單層蜂窩狀平面結構。這兩種物質都具有獨特的幾何和電子性質,激發了科學家和藝術家的廣泛興趣。克萊因全七邊形網絡可以被視為是探索新型碳同素異形體的一種理論模型。

網站連結

您可以在 Bridges Organization 的網站上找到更多關於 Bih-Yaw Jin 教授及其合作者的藝術作品:

Friday, May 15, 2015

Bead model of a Trinoid

Tsai-Rong Liu (劉采容), an undergraduate at chemistry department of the National Taiwan University, built this interesting graphitic structure which approximates the trinoid, a minimal surface with three catenoid openings. Similar graphitic surfaces with k catenoid openings, i.e. k-noids, can be built similarly.
作品完成時間(約):2015/4/15
作者:劉采容

Saturday, May 2, 2015

Friday, April 3, 2015

Bead model of the Chen-Gackstatter surface of genus 1

I made a bead model which approximates the minimal surface, Chen-Gackstatter surface of genus 1, for the spring break.
Other Chen–Gackstatter surfaces can be made with mathematical beading, in principle!
2015/4/3

Wednesday, March 11, 2015

Hyperbolic soccerball

I posted many hyperbolic bead models before. But most of them are periodic surface structures in 1- to 3-D dimensional spaces. Examples are various periodic minimal surfaces. In these models, one needs to pay attention to the subtle periodic conditions in the course of beading. Sometimes, it makes the beading quite difficult.
Here, I show a simple construction of hyperbolic soccerball (truncated order-7 triangular tiling) consisting of infinitely many heptagons (blue beads), each of them are connected to seven neighboring heptagons by only one carbon-carbon bond, which is represented by a yellow bead in the model shown below.
Following the spiral beading path by adding hexagons and heptagons, eventually one obtains the hyperbolic soccerball, or more exactly a hyperbolic graphitic snowflake. There is no need to worry about the periodic conditions among different parts of the structure.
From wiki: Truncated order-7 triangular tiling
In principle, one can also use kirigami (paper cutting) to make a model of the hyperbolic soccerball. But I found that the beading technique is much easier for making robust structure of this object due to the nature of mathematical beading. Also the bead hyperbolic soccerball should be able to model the local force field of hyperbolic soccerball to certain extent because the bead model not just gives the connectivity of the molecular graph right, but also mimics the microscopic repulsions among chemical bonds.

Thursday, November 6, 2014

Bead model of Klein's all-heptagon network

I took a picture of single tetrahedral unit (12 heptagons) of D56 bead model on the figure depicting schematically an open network consisting only of heptagons, described by Klein in his 1879 paper.

Klein, F. (1878). "Ueber die Transformation siebenter Ordnung der elliptischen Functionen" [On the order-seven transformation of elliptic functions]. Mathematische Annalen 14 (3): 428–471. Translated in Levy, Silvio, ed. (1999). The Eightfold Way. Cambridge University Press.

C20 vs C56

Tuesday, December 11, 2012

D- and G-types TPMSs

28 groups of students from TFGH joined the competition designed by Ms. Chou and other teachers in the chemistry group of TFGH. They were asked to make any of these two complicated 3D models based on the slides I prepared for the G- and D-surfaces. It is still nontrivial for a beginner, who has no knowledge on the periodic minimal surfaces and graphitic structures. But most of them succeeded in creaking one of these two models. Unfortunately, when they asked local sellers about the suitable thickness of Nylon strings for 12mm beads. They were told that 0.6mm NyLong strings are best. That is why most of models they made are so soft and unable to stand on themselves. To solve the problem, students came up with the idea to hang these models on four legs of an upside-down desk they use for lectures.

However, one group discovered the cause to be the thickness of the Nylon string. Then students of that group changed the Nylon strings to 0.8mm. The two TPMS models they made are shown in the following photo. They look really nice and beautiful.
The one on the left is the G-surface. The one on the right side is the D-surface consisting of 16 helical strips. Using the decomposition technique Chern Chuang designed, we can use the same helical strips to create these two types of TPMSs.

Gyroidal Invinciball

A graphitic gyroid is a hyperbolic object. To make it, we need to introduce octagons at suitable positions on a graphitic sheet, which is similar to the pentagons in the spherical space such as buckyball. In some sense, we can view graphitic gyroid as a kind of "ball" in the hyperbolic space.

Students from the TFGH created this gyroidal invinciball in the hyperbolic space. Unfortunately, they used 0.6mm Nylon strings for the 12mm faceted beads. The structure is too soft to stand on its own.

Monday, December 10, 2012

Gyroidal National Flag of Republic of China (Taiwan)

I went to a special ceremony for the beading competition held in the Tapei First Girls High School this afternoon. I saw this amazing 3D flag model of my country, Republic of China (i.e. Taiwan), which is made by a suitable color code of octagons in a gyroidal graphene.
BTW, you can also interpret this flag as that of US.

Wednesday, November 21, 2012

G- and D-surfaces in TFGH

Fang-Fei Chou and other teachers of chemistry section of the Taipei First Girl High school (TFGH) started a new bead project based on the slides I made for the anniversary of their school early next month. Using these slides only, they are going to make 2x2x2 G and D surfaces by themselves. Fang-Fei told me that there are about 30 teams in this project, which means they are going to have about 30 giant bead models of TPMS.

Attached is a photo that shows their current progress.
As you can see that their strips are quite long because they use 12mm beads. I made two G surfaces with 6mm and 8 mm beads, respectively. The one made of 6mm beads is about 20x20x20cm. So the G surfaces they are going to make are about 40x40x40cm. I wonder where they are going to put so many gigantic bead models.

Thursday, November 1, 2012

The procedure for constructing G- and D- surfaces

Here are a few slides that show the detailed instruction for making G- and D- surfaces, which I prepared for students and teachers of TFG (Taipei) school. As I said it could be a difficult task because the gyroidal structure and D-type TPMS are complicated structures. The first bead model of a 2x2x2 G-surface took Chern and I almost five years to finally make it. Of course, I have many unfinished bead models of this structure or similar structures with different Goldberg vectors, some made by Chern and some by me, which have mistakes here or there.

In order to how to make this model successfully, we'd better to know the three-dimensional structures of G- and D-type surfaces a little bit. Additionally, it is crucial to know how two structures can be decomposed into several basic unit strips and how to connect these helical strips.

I am also working on an article in Chinese entitled "大家一起動手做多孔螺旋與鑽石型三度週期最小曲面的串珠模型 (A Hands-on, Collaborative Approach to Gyroid- and Diamond-type Triply Periodic Minimal Surfaces with Beads)", which describes in details the procedure to make G- and D-surfaces and also give some background information on TPMS. I might be able to finish the paper in a few days. Hopefully, I will find time to do it in English someday. But, even without detailed explanations, these slides together with other posts in this blog should already contain enough information for people who want to do it.

The first nine slides should give students a better picture of a gyroid:
In slide 10, we can see how a coronene unit corresponds to 1/8 unit cell. Important structural features of a beaded gyroid is summarized in slide 11. Then in slides 12-15, I describe how to make the basic construction unit, a long strip, which should be easy for student to make.
The remaining five slides, 16-20, use schematic diagrams to show how two slides can be combined to generate either D-surface or G-surface.
To create a 2x2x2 gyroidal surface, we need 16 strips, which can be easily done if many people work in parallel. To connect them is nontrivial, you need to follow slides 16-20 carefully. In total, there are about 5000 beads in the model.

Gyroid: simulation vs bead model

I carefully recalculated the region of Gyroidal surface and got a better comparison between the calculated surface and the bead model. The agreement is quite well. We can see the helical strips we used have made the whole structure a little bit longer than 2 unit cells along the z direction.

Saturday, October 20, 2012

Another way to view D surface

There is another way to partition the D-surface to its constituents. It looks quite different.
It would be interesting to compare these pictures with the bead model of D surface Wei-Chi made: (http://www.ams.org/mathimagery/displayimage.php?album=32&pid=418#top_display_media, AMS Math Imagery)