Thursday, March 7, 2013

Another dodecahedrane

I made one more valence sphere model (VSM) of dodecadrane (C20H20) yesterday. Although this model looks simple compared to other bead models I have made, I still feel satisfied every time I made a bead model of this molecule.

Superfullerene with zometools

After months of planning, we finally created the zometool model of superfullerene, a giant buckyball consisting of 60 smaller buckyballs.


The main lobby, 勝凱廳, of chemistry department of National Taiwan University.

Wednesday, March 6, 2013

Third level Sierpinski superbuckyball: C20⊗C20⊗C20

As was asked by Bih-Yaw, I think in principle one can always go on the process of using fullerenes to construct superfullerene, and then treat the result as the new module to build a supersuperfullerene etc.. The idea is the same. The problem is always physical limitations: the structure goes too heavy to support itself or you run out of memory trying to build that on a computer. Here is the simplest nontrivial case that I can do on my laptop, a third level superfullerene C20⊗C20⊗C20.

C20⊗C20⊗C20 with g=(1,1): C15920 (Ih)



It is clearer to see when there are only two adjacent nodes:



I would say this is not unbeadable. However, as mentioned, one has to make sure the structure is strong enough to hold itself up. In my experience the best shot is to go with 3mm plastic beads and 0.4mm fish lines, which I'm currently using for the construction of a C60⊗C60 superfullerene. Other possibilities are icosahedron⊗icosahedron⊗C60 or cube⊗cube⊗C60, but I think they are not as representative and illuminating as this one.

Tuesday, March 5, 2013

Short summary of zome-type superbuckyball part IV: Tori and miscellaneous

Lastly, we will address some other examples of this method of constructing graphitic structures from C60s. We will start with planar tori. All of the zometool models of these tori reported here are composed of entirely blue struts.

Threefold torus⊗C60 with g=1: C216 (C3v)



Fourfold torus⊗C60 with g=0: C224 (C2h)



As noted parenthetically, the rotational symmetry of this structure is actually twofold only.

Fivefold torus⊗C60 with g=0: C280 (C5v)



Sixfold torus⊗C60 with g=0: C336 (D3v)



Hyper cube⊗C60 with g=(0,3,1): C1536 (Th)



Perhaps this hypercube should be also classified as polyhedron in the previous post, since it IS a regular polyhedron in 4D. As can be seen, there are three different kinds of struts (two blues with different lengths and one yellow) in this structure. It is thus more difficult to find a reasonable set of g parameters that suits all of their intricate geometric relations. The CNTs in the outer layer are bent to accommodate this incommensurability. I have to point out that, in graph theory, 4D hypercube cannot be represented by a planar graph. This fact leads to considerable difficulty, if not impossible, in constructing corresponding graphitic structures with out previous approach of using the inner part of TCNTs. However, with the zome-type construction scheme this is nothing different than other graphically simpler structures.

Dodecahedron with V-shape edges⊗C80 with g=1: C4960 (Ih)



Note that one has to at least use C80 (or larger Ih-symmetric fullerenes) instead of C60 for the nodes, since the yellow struts joining at the same node are nearest neighbors to each other. Total fifty C80s were used, twenty for the (inner) dodecahedron and thirty for the (outer) edges. If I make it to the Bridges this year in Enschede, I'll bring a beaded molecule of this model with me.

Last but not least, how can I not play with trefoil knot?

Trefoil knot⊗C60 with g=(0,1,3): C912 (D3)



Unfortunately, so far I have not thought of any general scheme to construct arbitrary torus knots, as trefoil knot is only the simplest nontrivial case of them. In principle as long as the structure (or the space curve as for knots) can be constructed with zometool, there is also graphitic analogs of it and presumably beaded molecules as well. This concludes this series of posts. I'm currently working on a beaded molecule of C60⊗C60 with g=1 posted previously. I'm about half way there and I might talk about some specific beading strategies of this kind of structures later on.

Friday, March 1, 2013

Short summary of zome-type superbuckyball part III: Polyhedra

In this post I will present some other polyhedra built with the same principle. As you might know that the C20 and the C60 discussed in the previous post are exactly regular dodecahedron and the truncated icosahedron (an Archimedean polyhedron).

Cube⊗C60 with g=1: C624



I'd like to note that the symmetry of this structure belongs to the Th point group, although it looks as if it's got a higher symmetry of octahedral group. This is so because of the fact that locally there is only C2 rotational symmetries along each of the joining tubes. And there is no C4 rotational symmetry, not only in this structure but also in all other structures constructed with the golden ratio field where zometool is based on.

Icosahedron⊗C60 with g=2: C1560



I've posted a closely related high-genus structure quite some time ago using a different algorithm. There I treated the construction of high-genus fullerenes by replacing the faces of the underlying polyhedra by some carefully truncated inner part of a toroidal CNT. As suggested by Bih-Yaw that the current scheme of constructing superfullerenes is one another aspect of high-genus fullerene. Previously we are "puncturing holes" along the radial direction and connecting an inner fullerene with an outer one. Here we break and connect fullerenes in the lateral directions. Although topologically they are identical, as you can see the actual shapes of the resulting super-structures are quite different.

For your convenience I repost the structure here for comparison:



The construction of (regular) tetrahedron and octahedron requires the use of green struts. For now I have not come up with the corresponding strategy for green strut yet. We will move on to other polyhedra in the rest of this post.

Small Rhombicosidodecahedron⊗C60 with g=1: C5040



This Archimedean solid is of special interest since the ball of zometool is exactly it. The squares, the equilateral triangles, and the regular pentagons correspond directly to C2, C3, and C5 rotational axes, respectively. The existence of this superfullerene guarantees the possibility of building hierarchy of Sierpinski superbuckyballs. In other words, this superbuckyball can serve as nodes of a "supersuperbuckyball", with the connecting strut automatically defined. Although we are likely to stop at the current (second) level because of physical limitations, either using beads, zometool, or even just computer simulations.

Rhombic triacontahedron⊗C60 with g=1: C3120



You need red struts only for this structure.

Five compound cubes⊗C60 with g=(0,1): C6000



You need blue struts with two different lengths for this structure, which is the reason why the g factor is a two component vector here. Note that at each level the length of the strut (measured from the center of the ball at one end to the center of the other) is inflated by a factor of golden ratio. Thus, comparing to other superfullerenes introduced previously, there is additional strain energy related to the commensurability of the lengths of CNTs. It is always an approximation to use a CNT of certain length to replace the struts of a zometool model. It is also interesting to note that, comparing to the zometool model, this particular superbuckyball makes clear reference to the encompassing dodecahedron. In this perspective it is not surprising that the structure has Ih symmetry.

Dual of C80⊗C60 with g=2: C5880



This structure is obtained by inflating each of the equilateral triangles of a regular icosahedron to four equilateral triangles. An equivalent way of saying this is "inflation with Goldberg vector (2,0)".

In addition to the above mentioned, Dr. George Hart has summarized some of the polyhedra construtable with zometool here. In principle they can all be realized, at least on computers or with beads and threads, by this methodology. And there is going to be one last post in this series to cover those that are not classifiable into categories discussed so far.